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SIGNAL   PROCESSING   &   SIMULATION   NEWSLETTER 
 
 
 
Fourier analysis made Easy Part 1 
 
Jean Baptiste Joseph, Baron de Fourier, 1768 - 1830 
 
While studying heat conduction in materials, Baron Fourier (a title given to him by 

Napoleon) developed his now famous Fourier series, approximately 120 years after 
Newton published the first book on calculus. It took Fourier another twenty years to 
develop the Fourier transform which made the theory applicable to a variety of 
disciplines such as signal processing where Fourier analysis is now an essential tool. 
Fourier did little to develop the concept further and most of that work was done by 
Euler, LaGrange, Laplace and others. Fourier analysis is now also used in thermal 
analysis, image processing, quantum mechanics and physics.  

 
Why do we need to do Fourier analysis � In communications, we can state the 

problem at hand this way; we send an information-laced signal over a medium. The 
medium and the hardware corrupt this signal. The receiver has to figure out from the 
received signal which part of the corrupted received signal is the information signal and 
which part the extraneous noise and distortion. The transmitted signals have well 
defined spectral content, so if the receiver can do a spectral analysis of the received 
signal then it can extract the information. This is what Fourier analysis allows us to do. 
Fourier analysis can look at an unknown signal and do an equivalent of a chemical 
analysis, identifying the various frequencies and their relative �quantities� in the signal. 

 
Fourier noticed that you can create some really complicated looking waves by just 

summing up simple sine and cosine waves. For example, the wave in Figure 1a is sum 
of the just three sine waves shown in Figures 1b, 1c and 1d of assorted frequencies and 
amplitudes. 
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(a) - A complicated looking wave 
 
 

  
 
(b) - Sine wave 1       (c)- Sine wave 2 (d) - Sine wave 3 
 
Figure 1 - Sine waves 
 
Let�s look at signal 1a in three dimensions.  With time progressing to the right we 

see the amplitude going up and down erratically, we are looking at the signal in Time 
domain. From this angle, we see the sum of the three sine waves as shown in Fig 
(1b,c,d). 

 
When we look at the same signal from the side along the z-axis, what we see are the 

three sine waves of different frequencies. We also see the amplitude but only as a line 
with its maximum excursion. This view of the signal from this point of view is called 
the Frequency Domain. Another name for it is the Signal Spectrum. 

 
 

 
 
Figure 3 - Looking at signals from two different points of view 

 
The concept of spectrum came about from the realization that any arbitrary wave is 

really a summation of many different frequencies. The spectrum of the composite wave 
f(t) of Fig (1) is composed of just three frequencies and can be drawn as in Fig (3.1).  
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This is called a one-sided magnitude spectrum. One-sided not because anything 
has been left out of it, but because only positive frequencies are represented. (So what 
is a negative frequency? Is there such a thing? We will discuss this in more detail in 
later. For now, suffice it to say that a negative frequency is simply a frequency which is 
lagging in phase.)  

 

 
Figure 3.1 - The Frequency Domain spectrum of wave in Figure 1 
 
Now let�s look at the signal in frequency domain. Think of it as a recipe, with x-

axis showing the ingredient and the y-axis, how much of that ingredients. The x-axis 
for a signal would show the different frequencies in the signal and y-axis the amplitude 
of each of those frequencies. 

 
Let�s expand on this concept. V-8 juice for example has many different ingredients 

such as celery juice, salt, water, spices, etc.. We can remove most of these ingredients 
one by one and the remaining liquid would still taste essentially like V-8.  What we can 
not remove and have the item still retain its primary character is called the 
fundamental component. In V-8, that is tomato juice.  

 
Signals carrying information, similarly, have a fundamental frequency along with 

other lesser important frequencies. A noisy signal on the other has no single 
fundamental frequency. It has a flat spectrum. All frequencies are present in the signal 
in the same quantities. So a spectrum does not necessarily have a fundamental 
component. The spectrum of such a signal would be flat. 

 
Let�s take the following complicated looking wave. 
 
 



 

Easy Fourier Analysis Part 1  Complextoreal.com                                                                                 

 

4 
 

 
Figure 4 - Another really complicated looking wave 

 
The first thing we notice is that the wave is periodic. Fourier analysis tells us that 

any arbitrary wave such as the above that is periodic, can be represented by a sum of 
other simpler waves.  

 
Let�s try summing a bunch of sine waves to see what they look like. 
 

 
 Figure 5a - This is a wave of frequency 1 Hz , amplitude = 1 
 

  
Figure 5b - This is a wave of frequency 2 Hz , amplitude = 1 

 

 
 

Figure 5c - This is a wave of frequency 3 Hz , amplitude = 1 
 

This wave is periodic with 
a period = 1 sec. 
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Figure 5d - This is a wave of frequency 4 Hz , amplitude = 1 
 
Each of the waves here have frequencies that are integer multiples. In more 

scientific words, we say that they are harmonic to each other, similar to musical notes 
which are also called harmonic. 

 
• What is a harmonic � It is a frequency that is integer multiple of the other 

frequency. Waves of frequency 2 and 4 Hz are harmonics  to a wave of frequency 1 Hz 
since they are both its integer multiples. Frequencies 2.4 and 3.6 Hz are harmonics to a 
wave of frequency 1.2 Hz since they are both integer multiples of 1.2 Hz.  

• When the multiple factor is even, the harmonic is called an even 
harmonic and when the factor is odd, it is called the odd harmonic. 

• Frequencies 66, 110, 154 Hz are odd harmonics of frequency 22 Hz, 
whereas 44, 88 and 132 Hz are even harmonics. 

 
We write the sum of N such harmonics as  
 

1
( ) sin( )

N

n
nf t tω

=

=∑        (1) 

 
Each wave has a frequency that is integer multiple of the starting frequency ω, 

which is equal to 2 (1)π  in this case since f = 1 Hz. Here is what a sum of four sine 
waves of equal amplitude, each starting with a phase of 0 degrees at time 0 looks like.  

 
( ) sin( ) s1 2in( ) sin( ) sin3 4( )f t t t t tω ω ω ω= + + +      

 
 

 
 
Figure 6 - This is the sum of all four of the above sine waves.  
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If we keep going and add a large number of sine waves of equal amplitude, the 
summation approaches an impulse function as shown below for N = 25. Since we 
added together 30 sine waves of amplitude 1, the maximum amplitude is 25. 

 
 

 
 
Figure 7 - This is the sum of 25 sine waves.  
 
In the graph above, we allowed the amplitude of each harmonic to be one. Going to 

the next level of abstraction, it is obvious that to represent an arbitrary wave, we need 
to allow the amplitude of each component to vary. Otherwise, all we will get is the 
scaled version of the signal in Fig (7). So we modify equation (1) by introducing a 
coefficient an to represent the amplitude of the nth sine wave as follows: 

 

1
( ) sin( )

N

n
nf t n ta ω

=

=∑      (2) 

 
The coefficient an allows us to vary the amplitude of each harmonic fn(t) = sin(nωt) 

to create a variety of waves. Here is what one particular wave which is the sum of four 
sine waves of unequal amplitude looks like. 

 
 

 
 
Figure 8 - Sum of four sine waves of unequal amplitude 
 
But looking at the original wave, f(t) in Fig (4), we see that it starts at a non-zero 

value. No matter how many sine waves we add together, we can not replicate this wave 
because sine waves are always zero at time zero. But if we add some cosine waves to 
the sum in equation (2) which do not start at zero, we may be able to create the wave of 
Figure 2. 
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So let�s add a bunch of cosine waves of varying amplitudes to our f(t) equation.  
 

 
 
Figure 9a - A cosine wave of frequency 1 Hz, amplitude = 1 
 

 
Figure 9b - A cosine wave of frequency 2 Hz, amplitude = 1 
 

 
Figure 9c - A cosine wave of frequency 3 Hz, amplitude = 1 
 
 

 
Figure 9d - A cosine wave of frequency 4 Hz, amplitude = 1 
 
 
Once again the sum of the cosine waves of equal amplitude looks like this. 
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Figure 10 - Sum of four cosine waves of equal amplitude 
 

 
 
Figure 11 - Sum of 30 cosine waves of equal amplitude 

 
A sum of 30 cosine waves looks like as in Fig (11). It approaches an impulse 

function just as the sum of sine waves did but this one is an even function. 
 
• Even function � The function that is symmetrical about the y-axis.  Cosine wave 

is an even function. 
• Odd function � The function that is not symmetrical about the y-axis. Sine wave 

is an odd function. 
 
The sum of the cosines is an even function. Contrast this with Fig (7), the sum of 

sines, which is an odd function. These characteristics, odd and even, are useful when 
looking at real and imaginary components of signals. 

 
Now let�s allow the amplitude of each cosine wave to vary. Here is what one 

particular sum of four cosines of unequal amplitudes looks like. 
 

 
Figure 12 - Sum of four cosine waves of unequal amplitude. 
 
Now let�s modify equation (2) to add the cosine waves. 
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1 1
( ) sin( ) cos( )

N N

n n
n n

f t a n t b n tω ω
= =

= +∑ ∑     (3) 

 
The coefficients bn allow us to vary the amplitude of each cosine wave. Putting this 

equation to work, we see in the following figure the sum of four sine and four cosine 
waves. 

 

 
Figure 13 - Sum of five sine and cosine waves of unequal amplitudes 
 
We are very close to completing our equation for arbitrary periodic waves. There is 

only one remaining issue. Sums of sine and cosines are always symmetrical about the 
x-axis so there is no possibility of representing a wave with a dc offset. To do that we 
add a constant, a0 to the equation. This constant moves the whole wave up (or down) 
along the y-axis offset. 

 
 

1
0

1
( ) sin( ) cos( )

N N

n n
n n

f t a n t b ta nω ω
= =

= + +∑ ∑    (4) 

 
The coefficient a0 provides us with the needed dc offset from zero. Now with this 

equation we can fully describe any periodic wave, no matter how complicated looking 
it is. All arbitrary but periodic waves are composed of just plain and ordinary sines and 
cosines and can de composed in its constituent frequencies..   

 
Equation (4) is called the Fourier Series equation. The coefficients a0, an, and 

bn are called the Fourier Series Coefficients.  
 
An equation with many faces 
 
There are several different ways to write the Fourier series. One common 

representation is by linear frequency instead of the radial frequency.  Replace ω by 2πf  
and then write the equation as 

 

0
1 1

( ) sin(2 ) cos(2 )
N N

n n
n n

f t a a nft b nftπ π
= =

= + +∑ ∑    (5) 
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The Fourier series equation allows us to represent any wave, low or high frequency, 
baseband or passband, large bandwidth or very small. N is the number of harmonics 
used in the summation. This is a variable and we can choose it to be anything, but for 
complete representation, N is set to infinity. This makes the equation completely 
general and we can represent even noise signals this way. The harmonics themselves do 
not have to be of integer frequencies such 1, 2, 3 etc.. The starting frequency can be any 
real or imaginary number. However, the harmonics of the starting frequency ARE its 
integer multiples. 

 
1( ) ( )nf t n f t n
T

= =  

 
f(t) the smallest frequency is called the resolution frequency, determines how 

finely we decompose the signal. It can be any arbitrary number, say for example 2.35. 
From that point on, the next harmonic is 2 times this, next one 3 times and so on. T, is 
the period of the first wave we pick, and each fn is an integer multiple of the inverse of 
that period. We can also start anywhere. We can pick a small resolution frequency and 
then start the analysis with the 100th harmonic for example.  

 
Replace fn by n/T, where T is the period and replace N by ∞  to write equation (5) 

in a different from. 
 

( ) ( )0
1

( ) sin 2 cos 2/ /n n
n

n Tf t a a t b tn Tπ π
∞

=

= + +∑    (6) 

 
We can also convert all sine waves and make them cosine waves by adding a half-

period phase shift. The cosine representation, used often in signal processing is written 
by adding a phase term to the equation.   

 
sin(2 ) cos(2 2)/ft ftπ π π= +  
 
To create the f(t) we would add two cosine waves of the same frequency, except the 

one of them would have a / 2π  phase shift (that�s a sine wave, really.) Now we have 
only cosines. The name of the coefficient has been changed to cn, to reduce confusion 
between this term and the terms an and bn. a0 and C0 would be exactly the same as a0. 

 

0
1

0
1

0
1

( ) cos( )

( ) cos( )

( ) c

2

2os( )

n

n

n n
n

n n
n

n n
n

f t C C t

f t C C t

f

f

w

nt C C t
T

π

π

φ

φ

φ

∞

=

∞

=

∞

=

= + +

= + +

= + +

∑

∑

∑

     (6a) 
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In complex representation, the Fourier equation is written as 
 

/( ) n
n

jn t Tf t C e π
∞

=−∞
= ∑       (7) 

 
Complex notation, first given by Euler, is most useful-albeit scary-looking form. In 

next part, we look at how it is derived and used for signal processing. 
 
All these different representations of the Fourier Series (4), (5), (6), (6a) and (7) are 

identical and mean exactly the same thing. 
 
 
How to compute the Fourier Coefficients of an arbitrary wave 
 
In signal processing, we are interested in spectral components of a signal. We want 

to know how many sines and cosines make up our signal and what their amplitudes are. 
Alternatively, what we really want are the Fourier coefficients of our signal. Once we 
know the Fourier coefficients, we know which frequencies are present in the signal and 
in what quantities. This is similar to doing chemical analysis on a compound, figuring 
out what elements are there and what relative quantity.  

 
How do we compute the Fourier coefficients?  
 
Computing a0 
 

0
1

( ) ( sin cos )n n n n
n

f t a a t b tω ω
∞

=

= + +∑  

 
The constant a0 in the Fourier equation above represents the dc offset. But before 

we compute it, let�s take a look at one particular property of the sine and cosine waves. 
 
Both sine and cosine wave are symmetrical about the x-axis. When you integrate a 

sine or a cosine wave over one period, you will always get zero. The areas above the x-
axis cancels out the areas below it. This is always true over one period as we can see in 
the figure below. 

 

 
 
Figure 14 - The area under a sine or a cosine wave over one period is always zero. 

Positive and 
negative area 
cancel. 

Positive and 
negative area 
cancel. +Area 

+Area 
+Area

-Area
-Area
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1

1

sin 0

sin cos 0

T

n no
n

T

n n n no
n

a w t dt

a w t b w t dt

∞

=

∞

=

  = 
 
 + = 
 

∑∫

∑∫
 

 
The same is also true of the sum of sine and cosines. Any wave made up of sum of 

the sine and cosine waves also has zero area over one period. So we see that if we were 
to integrate our signal over one period the area obtained will have to come from 
coefficient a0 only. The harmonics can make no contribution and they fall out.  

 

0

0

1
0

sin cos( )
T

n n n no o
n

T
T

f t dt a dt a w t b w t dt
∞

=

 += 
 

+∫ ∑∫∫
644444474444448

   (8) 

 
The second term is zero in (8), since it is just the integral of a wave made up of sine 

and cosines. Now we can compute a0 by taking the integral of our complicated looking 
wave over one period. 

 

 
Figure 16 - Signal to be analyzed, looks like it has a dc offset since there is more area 

above the x-axis than below. 
 

  
 
Figure 16a - The dc component 

All area comes from the a0 
coefficient. 

The wave has non-zero area 
in one period, which means it 
has a DC offset. 
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Figure 16b - Signal without the dc component 
 
 
The area under one period of this wave is equal to 
 

0 0

( )
T T

of t dt a dt=∫ ∫      (9) 

 
Integrating this very simple equation we get,  
 

f t dt a T
T

( )
0

0∫ =       (10) 

 
We can now write a very easy equation for computing a0 
 

a
T

f t dt
T

0
0

1= ∫ ( )       (11) 

 
Since no harmonics contribute to area, we see that a0 is equal to simply the area 

under our complicated wave for one period divided by T, the integral period. We can 
compute this area in software and if it is zero, then there is no dc offset. This is also the 
mean value of the signal. A signal with zero mean value has no dc offset. 

 
 
Computing an 

 
Now we employ a slightly different trick from basic trigonometry to compute the 

coefficients of the sine waves. Here is a sine wave of an arbitrary frequency nω that has 
been multiplied by itself.  

 
 
 

( ) sin *sinf t t tn nω ω=  

Area under the wave when 
shifted down is zero. 
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Figure 17 - The area under a sine wave multiplied by itself is always non-zero. 
 
 
We notice that the resulting wave lies entirely above the x-axis and has a net 

positive area. From integral tables we can compute the area as equal to 

( ) ( )
0

sin sin / 2
T

n na n t m t dt a T for n mω ω = =∫
   (12) 

 
Where T is the period of the fundamental harmonic. But now let�s multiply the sine 

wave by an arbitrary harmonic of itself to see what happens to the area. 
 

( ) sin *sinf t t tn mω ω=  
 

 
 
Figure 18 - The area under a sine wave multiplied by its own harmonic is always zero. 
 
The area in one period of a sine wave multiplied by its own harmonic is zero. We 

conclude that when we multiply a signal by a particular harmonic, the only contribution 
comes from that particular harmonic. All others harmonics contribute nothing and fall 
out.  

 

Multiplying one sine wave by 
any other causes the area 
under the new wave to 
become zero. 

Sine wave multiplied by 
another of a different 
harmonic 
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( ) ( )

( ) ( )

0

0

sin sin 0

sin sin / 2

T

n

T

n n

a n t m t dt for n m

a n t m t dt a T for n m

ω ω

ω ω

= ≠

= =

∫

∫

   (12) 

 
Now let�s multiply a sine wave by a cosine wave to see what happens. 
 

( ) sin *cosf t t tn mω ω=  
 

 
Figure 19 - The area under a cosine wave multiplied by a sine wave is always zero. 
 
It seems that the area under the wave which is multiplication of a sine and cosine 

wave is always zero whether the harmonics are the same or not. Summarizing, by 
setting n nω ω=  

 

( ) ( )

( ) ( )

( ) ( )

0

0

0

sin sin 0

sin sin / 2

cos sin 0

T

n n m

T

n n m n

T

n n m

a t t dt for n m

a t t dt a T for n m

a t t dt for all n and m

ω ω

ω ω

ω ω

= ≠

= =

=

∫

∫

∫

  (13) 

 
Rules: 
 
1. The area under one period of a sine or a cosine is zero. 
 
2. The area under one period of a wave that is a product of two sine or cosine 
waves of non-harmonic frequencies is zero. 
 

Sine wave multiplied by a 
cosine wave for any n and m 
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3. The area under one period of a wave that is a product of two sine or cosine 
waves of same harmonic frequency is non-zero and not equal to / 2na T , where 
T is the period of the resolution frequency we have chosen. 
 
4. The area under one period of a wave that is a product of a sine wave and a 
cosine wave of any frequencies (different or equal) is equal to zero. 
 
  
Recall that in vector representation, sine and cosines are orthogonal to each other.  

So all harmonics are by definition orthogonal to each other. 
 
A very satisfying interpretation of the above rules is that sine and cosine waves can 

act as filtering signals. In essence they act as narrow-band filters and take out all 
frequencies except the one of interest. This forms the basic concept of a filter. 

 
Now let�s use this information. Successively multiply the Fourier equation by a sine 

wave of a particular harmonic and integrate over one period as in equation below.  
 

( ) ( ) ( ) ( ) ( ) ( )

0

0

0

0
0

sin cos sin( )
0

sin sin sin
T T

n
o

T T

nf t nwt dt a n ta wt dt b n t n t dn t tt dω ω ω ω= + +∫ ∫∫ ∫
6447448 64444744448

 
 
We know that the integral of the first and the third term is zero since the first term 

is the integral of a sine wave multiplied by a constant (Rule 1) and the third is a sine 
wave multiplied by a cosine wave (Rule 3). This simplifies our equation considerably. 
The integral of the second term is  

 

( ) ( )
0

sin sin
2

T
n

n
a Ta n t n t dtω ω =∫     (13) 

 
From this we write the equation to obtain an, which are the coefficients of each of 

the sine waves as follows 
 

( )
0

2 ( ) sin
T

na f t n t dt
T

ω= ∫      (14) 

 
The an is then computed by taking the signal over one period, successively 

multiplying it with a sine wave of n times the starting fundamental frequency and then 
integrating. This gives the coefficient for that particular harmonic.  

 
Imagine we have a signal that consists of just one frequency, we think it is around 5 

Hz (and is a sine wave from). We begin by multiplying this signal by a sine wave of 
frequency .2 and each of its harmonics which are .4, .6, .8 ,�..10 and so on. Actually 



 

Easy Fourier Analysis Part 1  Complextoreal.com                                                                                 

 

17
 

since we know it is in the range of 5 Hz, we can dispense with the lower harmonics say 
up to 4 and start with 4.2 and go to 5.8 Hz.  

 
Here is all the math we do. 
 
1. Multiple the wave with a sine wave of frequencies 4.2 and integrate the result. 

Most likely the result will be zero. 
2. Go to next harmonic, which 4.4. This is 22nd harmonic of the resolution 

frequency .2 Hz. 
3. Repeat step 1 and 2 and continue until harmonic frequency is equal to 5.8 Hz. 
 
 
The results will show that the integrals of all harmonics frequencies are zero, except 

for the 25th harmonic, the integral of which will be equal to 
 

25
252.5

2
a T a= =  

25
One period integral

2.5
a =  

 
Where T = 1/f = 1/.2 = 5 sec. The coefficient can now be calculated which gives the 

amplitude of the wave. (We already know its frequency, which is 5 Hz, since the 
integral is non-zero for that component.). 

 
 
Computing coefficient of cosines, bn 
 
Now instead of multiplying by a sine wave we multiply by a cosine wave. The 

process is exactly the same as above.  
 

( ) ( ) ( ) ( ) ( ) ( )

0 0

0
0 0

cos( ) cos cos cossin cos
0

T T

n

T T

n
o

a n t dt a n tf t n t d n t dt b n t n t dttω ω ωω ω ω += +∫ ∫ ∫∫
6447448 6444447444448

 
 
Now terms 1 and 2 become zero. (First term is zero from rule 1, the second term 

due to rule 3.) The third terms is equal to 
 
 

( ) ( )
0

cos cos
2

T
n

n
b Tb n t n t dtω ω =∫     (14) 

 
and the equation can be written as 
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( )
0

2 ( ) cos
T

nb f t n t dt
T

ω= ∫      (15) 

 
So the process of finding the coefficients is multiplying our signal with 

successively larger frequencies of a fundamental wave and integrating the results. This 
is easy to do in software. The results obtained successively are the coefficient for each 
frequency of the harmonic wave. We do the same thing for sines and cosine 
coefficients.  

 
Following this process, we compute the coefficients of the following wave 
 

 
 
Figure 20 - The signal to be analyzed 
 
Without going through the math, we will give the answers in two vectors, first is the 

coefficients of the sine and second the cosine waves and the dcoffset. 
 
an = [.4 .3 .7 .3 .3 .3 .2 .3 .4] 
 
bn = [.05 .2 .7 .5 .2 .2 .1 .05 .02] 
 
a0 = .32 
 
From this we can write the equation of the above wave as 
 

4sin(2 1) .3sin(4 ) .7sin(6 )
.3sin(8 ) .3sin(10 ) .3sin(12 ) .2sin(14 ) .
.05cos(2 1) .2cos(4 ) .7cos(6 ) .5cos(8 )
.2c

( ) .

os(10 ) .2cos(12 ) .1cos(14

.

) ..

3

.

.
2

.
.f t

t t t t
t t

t t t
t t t t

t
π π π π

π π π
π π π π

π π π

+ +
+ + + + +
+ + + + +
+ + + +

= +

  

The coefficients are the amplitudes of each of the harmonics. The resolution 
frequency is 1 Hz and the harmonics are integer multiples of this frequency. Now we 
know exactly what the components of the received wave are. If the transmitted wave 
consisted only of one of these frequencies, then, we can filter this wave and get back 
the transmitted signal. 
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Summary 
 
The Fourier series is given by 
 

0
1 1

( ) sin( ) cos( )n n n n
n n

f t a a t b tω ω
∞ ∞

= =

= + +∑ ∑  

where  
  

2n nfω π=   
 
The coefficients of the Fourier series are given by 
 

a
T

f t dt
T

0
0

1= ∫ ( )   

( )
0

2 ( ) sin
T

na f t n t dt
T

ω= ∫    

( )
0

2 ( ) cos
T

nb f t n t dt
T

ω= ∫       

    
 
where ω is the fundamental frequency and is related to T by 
 

                         2 2n n
nf
T

ω π π= =  

 
 
Coefficients become the spectrum 
 
Now that we have the coefficients, we can plot the magnitude spectrum of the 

signal. 
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Figure 21 - The Fourier series coefficients for each harmonic 
 
You may now say that this spectrum is in terms of sines and cosines, and this is not 

the way we see it in books. The spectrum ought to give just one number for each 
frequency.  

 
We can compute that one number by knowing that most signal are represented in 

complex notation where sine and cosine waves are related in quadrature. The total 
power shown on the y axis of the spectrum is the power in both the sine and cosine 
waves in the real and imaginary components of the same frequency. We can compute 
the magnitude by from the root sum square of the sine and cosine coefficients for each 
harmonic including the dc offset of the zero frequency value. 

 
 2 2

n nMagnitude a b= +  
 
Plot the modified spectrum 
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Figure 22 - A traditional looking spectrum created from the Fourier coefficients 
 
Voila!  Although this is not a real signal, we see that it now looks like a traditional 

spectrum. The largest component is at frequency = 3. The y-axis can easily be 
converted to dB. In complex representation, the phase of the signal is defined by  

 
φn n nb a= −tan ( / )1  
 
For every frequency, we can also compute and plot the phase. Phase plays a very 

important role in signal processing and particularly in complex representation and 
shows useful information about the signal. 

 
One thing you may not have noticed during this computation of the coefficients is 

that they will be different depending on what you pick as the resolution frequency. We 
will get different answers depending on the choice we make for this number. In essence 
depending on the resolution, the signal energy leaks from one frequency to the next so 
we get different answers, but the overall picture remains the same. The issues of 
leakage will discussed later. 

 
We also stated that the wave has to be periodic. But for real signals we can never 

tell where the period is. Random signals do not have discernible periods. In fact, a real 
signal may not be periodic at all. In this case, the theory allows us to extend the 
�period� to infinity so we just pick any representative section of our signal or even the 
whole signal and call it �The Period�. Mathematically this assumption works out just 
fine for real signals.  

 
 

 
 
Figure 23 - We call the signal periodic, even though we don�t know what lies at 

each end. 

 
 

 
 
Figure 24 - Our signal repeated to make it mathematically periodic, but ends 

do not connect and have discontinuity 
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The part of the signal that we pick as representing the real period is only a sample 
of the whole and not really the actual period. The end section of the chosen section will 
most likely not match as they would for a real periodic signal. The error introduced into 
our analysis due to this end mismatch is called aliasing. Windowing functions are used 
to artificially shape the ends so that they are zero at the ends and so the chosen signal 
portion is made artificially periodic. This introduces errors in the analysis which have 
to be dealt with by other techniques. 

 
Next the complex representation. 
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